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Abstract
A curve skeleton is a line representation of a 3D object. It is useful in many applications, such as animation,
shape matching or scientific analysis. The method described in this paper extracts a curve skeleton from the
vector field which is created inside the 3D object. The topology of the vector field is analyzed to obtain the
curve skeleton. In contrast with previous methods, the vector field is calculated using a pseudo-normal vector.
Furthermore, by using the proposed skeleton-growing method, the vector field topology need not be computed for
every voxel. Therefore, the proposed approach requires significantly less computation compared with previous
vector field-based approaches, while still capturing all important parts of 3D object. The proposed method is very
useful for any applications, especially real-time applications such as quick animation production and prototyping
of graphical systems.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: , Computational Geometry
and Object Modeling – Curve, surface, solid and object representations

1. Introduction

3D models are commonly used in many applications, includ-
ing visualization [LCK10] animation [WP00, BP07], flight
planning for virtual colonoscopy [HHCL01], shape recog-
nition and shape retrieval [SSGD03]. These applications
sometimes need a compact representation of the original
3D object. One widely used method is a line representa-
tion, which is called a “curve skeleton”. The curve skeleton
captures all significant topological information of the orig-
inal object. There are several properties of both the curve
skeleton and curve-skeleton extraction as described below
[CSM07].

• Homotopy: the curve skeleton should preserve the essen-
tial topology of the 3D object.
• Robustness: curve-skeleton extraction should be robust

to small perturbations and transformations.
• Thinness: the curve skeleton should be thin.

† email : na@itl.t.u-tokyo.ac.jp
‡ email : sugi@itl.t.u-tokyo.ac.jp

• Centeredness: the curve skeleton should be located at the
medial surface of the 3D object.

• Connected: for a single connected component object, the
curve skeleton should be a single-connected curve.

The main contribution of this paper is a fast curve-
skeleton extraction algorithm. The curve-skeleton extraction
proposed in this paper is based on a vector field approach.
Instead of using a repulsive force function, as in previous
work [LWM∗03, CSYB05], a vector field is calculated by
using the pseudo-normal vector. The pseudo-normal vector
field can be calculated more cheaply compared with previ-
ous methods because it uses individual voxels instead of a
large set of boundary points. The curve skeleton is then ob-
tained from the vector field by extracting and connecting the
critical points in that vector field. This paper also proposes
a skeleton-growing method that does not need detection of
critical point at all voxels. As there may be some missing
joints, the proposed method uses the divergence value to de-
termine the additional joints.

This paper is organized as follows. Section 2 presents
related work; the mathematical background of vector field
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topology is explained in Section 3; an overview of the algo-
rithm is briefly explained in Section 4; the vector field cre-
ation and critical point detection algorithm is discussed by
comparing the previous method with the proposed method
in Sections 5 and 6, respectively; the additional joints detec-
tion method is explained in Section 7; Section 8 contains the
experimental results; and the conclusion and future work is
discussed in the final section.

2. Related work

Curve-skeleton extraction from 3D objects is a well-known
problem. There are several approaches that could be found
in the literature. Those previous methods will be described
briefly in this section. For more detail, a very good review of
curve-skeleton extraction methods can be found in the paper
written by Cornea et al. [CSM07].

Curve-skeleton extraction methods can be divided
roughly into two categories based on the representation of
3D objects. The volumetric approach is used for 3D ob-
jects represented by a collection of voxels (volumetric pix-
els). The other approach is the geometric approach, used for
polygonal mesh 3D objects. Due to the existence of vox-
elization [Lia08] and mesh generation [Zha05] algorithms,
both kinds of models are convertible to each other. There-
fore, we can apply both categories of methods to any kind of
3D object.

2.1. Geometric approach

The geometric approach uses the object mesh information
to extract the curve skeleton. The main advantage of the ge-
ometric approach is that it is typically faster than the volu-
metric approach. There are two famous classes of methods:
Voronoi-based methods [OI92] and Reeb graph-based meth-
ods [PP09].

Voronoi-based approaches use a Voronoi diagram to ex-
tract the medial surface of the 3D object. Then, the curve
skeleton can be extracted by using a thinning or pruning
method causing the extracted curve skeleton to not be thin,
and located at the center of the 3D object.

The Reeb graph is a 1D structure whose nodes are critical
points of a defined function on the 3D model surface. Most
Reeb graph-based methods require users to set the bound-
ary conditions explicitly. The constructed Reeb graph must
be embedded into the 3D model in the postprocessing step.
Therefore, the Reeb graph may not be located at the center of
the object. Furthermore, this approach is not robust against
transformation because the critical points depend on the de-
fined function.

2.2. Volumetric approach

The volumetric approach analyzes information from the
voxels that are located inside the object. The main advantage

of this approach is that it can handle objects made of multi-
ple overlapping parts (such as clothes over a body). There
are three popular classes of methods, including thinning
[SCG∗09], distance field-based methods [WDK01], and
vector field-based methods [LWM∗03, CSYB05, JQL07].

Thinning is a process of generating a curve skeleton by it-
eratively removing voxels from the object boundary until the
required thinness condition is satisfied. Most thinning algo-
rithms are designed for a specific connectivity (such as 6, 8
or 26 connectivity), so this method is data dependent.

The distance field is the field of the shortest distances from
each interior voxel to the boundary. This method attempts to
search for a set of candidate voxels that are locally centered
in the 3D object. Because the candidate set is fairly large,
some postprocessing method, such as thinning and recon-
necting, needs to be applied. Therefore, the curve skeleton
depends on the postprocessing step.

Vector field-based approaches attempt to extract the curve
skeleton from the vector field of the 3D object. The vector
field can be calculated by a potential function where the po-
tential of an interior point in the 3D object is the sum of
the potentials generated by the points of the object’s bound-
ary. This approach can generate a nice curve with all the
important properties mentioned previously. However, this is
achieved at the cost of increased computational complexity.

3. Mathematical background of vector field topology

The topological structure of 3D vector fields has been well
understood in the visualization community for many years
[GLL91, HH91, TWHS03]. This section explains the impor-
tant mathematical formula of vector field topology calcula-
tion, which will be referred to in a later section of this paper.

3.1. Critical points

Given a 3D vector field v, a vector for each position (x,y,z)
is [u(x,y,z), v(x,y,z), w(x,y,z)], where u,v and w are the axial
vector components for x,y and z axis, respectively. A first
order critical point, pc = (xc,yc,zc), is a point with v(pc)
= 0. There are three categories of critical points based on
the direction of vectors around each critical point, which are
listed below.

• Attracting node is the point where all the vectors con-
verge to that point.

• Repelling node is the point where all the vectors diverge
from that point.

• Saddle node is the point where some vectors converge
and others diverge.

The eigenvalues and eigenvectors of the transposed Ja-
cobian matrix of the vector field at the critical point are of
particular interest. The eigenvectors correspond to the direc-
tions of the vectors around that critical point. The Jacobian
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matrix of the vector field at any point is defined by the fol-
lowing equation.

J(pc) =


∂u
∂x

∂u
∂y

∂u
∂z

∂v
∂x

∂v
∂y

∂v
∂z

∂w
∂x

∂w
∂y

∂w
∂z

 (1)

Let λ1,λ2,λ3 be the eigenvalues of JT(pc) ordered ac-
cording to their real parts, i.e., Re(λ1) ≤ Re(λ2) ≤ Re(λ3).
From the real part of the eigenvalues, we can classify the
critical points using the criteria as described below.

• Attracting node: Re(λ1)≤ Re(λ2)≤ Re(λ3)< 0
• Repelling node: 0 < Re(λ1)≤ Re(λ2)≤ Re(λ3)
• Saddle node: Re(λ1)< 0<Re(λ2)≤Re(λ3) or Re(λ1)≤

Re(λ2)< 0 < Re(λ3)

The eigenvectors corresponding to the eigenvalues with
positive real parts describe the direction of vectors moving
outward from the critical point, while the eigenvectors cor-
responding to the eigenvalues with negative real parts show
the direction of vectors moving toward that point.

3.2. Divergence

Divergence is another interesting property of the vector field
because it measures the "sinkness" of a point [BS00]. It is a
scalar quantity that characterizes the rate of vectors leaving
from that point. Given the 3D vector field defined as men-
tioned previously, the divergence at any point, p, of the vec-
tor field can be calculated using:

∇·v(p) =
∂u
∂x

+
∂v
∂y

+
∂w
∂z

. (2)

A positive divergence indicates the vectors are mainly
moving away from the given point, while a negative diver-
gence describes vectors that are mainly converging to that
point.

4. Algorithm overview

To simplify the remainder of this paper, we assume that
the given 3D object is represented by a set of voxels. The
polygonal-based 3D object could be discretized to obtain its
volumetric representation using a voxelization algorithm, as
mentioned in Section 2. The curve-skeleton extraction algo-
rithm is summarized here.

1. Vector field creation: the first step is vector field cre-
ation. The algorithm will be described in Section 5
by comparing the previous method with our proposed
pseudo-normal vector method.

2. Curve-skeleton extraction: the curve skeleton is ex-
tracted by connecting all critical points in the vector field
together. The algorithm of this step will be explained in
Section 6 for both typical techniques and for our pro-
posed skeleton-growing method.

Figure 1: Vector field created by using a force function value
of 6.

3. Additional joint detection: the extracted curve skele-
ton from the previous step may not capture all important
joints. The missing joints can be determined by using the
divergence. The algorithm is described in Section 7 of
this paper.

5. Vector field creation

A vector field is a collection of vectors inside the 3D ob-
ject. In previous work, it is usually created using a potential
field function or repulsive force field function [LWM∗03,
CSYB05].This section explains the vector field creation al-
gorithm for both the typical repulsive force function method
and our proposed pseudo-normal vector method.

5.1. Repulsive force function

The repulsive force at a given point, P, is influenced by a
specific point charge (at the boundary), Bi, and is defined
as a force from that point charge that is pushing the given
point away with a strength that is inversely proportional to a
power of the distance between the point and the charge. The
force as described above is calculated using the following
equation.

−−→
FPBi =

−→
BiP
Dm , (3)

where
−−→
FPBi is the repulsive force at a given point, P, due to

the boundary voxel, Bi.
−→
BiP is the unit vector from Bi to P,

which describes the direction of the force. D is the distance
between P and Bi. The value of m is called the force function
value, which controls the characteristics of the created vector
field. Then, the force at point P is calculated by summing all
of the forces due to every boundary voxel. Figure 1 shows
the vector field created by force function values of 6.

The computational complexity of the vector field cre-
ation using a repulsive force function depends on the num-
ber of interior and boundary voxels of the original 3D ob-
ject. This method uses all boundary voxels for each inte-
rior voxel. Therefore, the computation complexity is O(NI×
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Figure 2: The boundary points move inward during the vec-
tor field calculation. From left to right: The first and the sec-
ond iteration of the calculation. The character "I", "E", and
"B" indicate the interior, exterior, and boundary voxel re-
spectively.

NB), where NI is the number of interior voxels, and NB is the
number of boundary voxels.

5.2. Pseudo-normal vector

Due to the high computational complexity of the repulsive
force function, it may not be applicable to real-time applica-
tions. The proposed method aims to reduce this complexity.
According to Figure 1, the characteristic of the vector at each
voxel is like a normal vector pointing to the medial surface of
the object. That is, the repulsive force field could be approx-
imated by calculating this normal vector at all voxels. Vector
field creation using this proposed method is described in Al-
gorithm 1 and also shown in Figure 2. The boundary points
are marked as “B” at the beginning of the iteration. After
completing the calculation, the interior neighboring points
marked as “I” will become the new boundary points in the
next iteration, and the previous boundary points will become
exterior points marked as “E”. The algorithm will stop when
there is no further interior voxels in the object, otherwise this
algorithm will calculate the normal vector at every boundary
voxel. The markVoxel function marks all boundary voxels
as exterior voxels, and also their interior neighboring voxels,
so they become the new boundary voxels before going to the
next iteration.

Figure 3: Illustration of pseudo-normal vector calculation
at the boundary voxel. Pseudo-normal vector is shown by
blue vector. Red vectors are unit vector created during the
calculation.

To create a normal vector, a tangent plane needs to be de-
fined at each voxel. We proposed the pseudo-normal vector,

which is calculated using the position of the voxels with-
out creating a surface or tangent plane. The pseudo-normal
vector acts as a normal vector. It is approximately perpen-
dicular to the surface around that voxel and points into the
object. Figure 3 demonstrates pseudo-nomal vector calcula-
tion. From that figure, unit vectors (red vector) are created
for every direction that points from an exterior (purple) to an
interior (green) voxel. The pseudo-normal vector (blue vec-
tor) is then calculated by summing and normalizing over all
such created unit vectors. Figure 4 shows an example of the
pseudo-normal vector field. The vectors are moving mainly
to the center of the object, similarly to the ones created by a
repulsive force function. However, the direction of the vec-
tors may not be as smooth as the repulsive force field.

By using this proposed method, the computation com-
plexity of the vector field creation process is reduced. For
each step of the calculation, this method uses only the
neighborhood of each voxel instead of using the large set of
boundary voxels, as in the repulsive force function method.
Therefore, the computational complexity of this method is
reduced to O(NI +NB), which equals O(NAll), where NAll
is the total number of object voxels. It means that as the
number of object voxels is increased, the computational
time will be increased linearly for this method.

Algorithm 1 : createVectorField(object)

if numberOfInteriorVoxel == 0 then
stop calculation

else
for i=1 to numberOfBoundaryVoxel do

calculateNormalVector()
end for
object = markVoxel(object)
createVectorField(object)

end if

Figure 4: The Pseudo-normal vector field.
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Figure 5: Critical point detection method using the vector
direction as a criterion. Left: Example of a voxel cell con-
taining positive and negative axial vector components (~u ,~v
and ~w ). Right: Subcell creation during critical point detec-
tion. Subcell that passes the candidacy test is shown by green
voxel. Red voxel indicates the voxel that does not pass such
test.

6. Curve-skeleton extraction

After the vector field is created inside the 3D object, the
curve skeleton is extracted from this vector field by analyz-
ing the vector field topology. Previous work detected the crit-
ical points in the vector field and connected them to form a
curve skeleton. Although our method also uses this strategy,
we proposed skeleton-growing method, which can reduce
the computational time compared with the previous work.

6.1. Typical approach

Critical points could be detected by examining all object
voxels. As mentioned in Section 3, a critical point is a point
where the magnitude of the vector is zero. However, de-
tecting a critical point is difficult using only individual vox-
els, because it is usually located between voxels. Therefore,
this process must use the voxel cell (the given voxel and
its neighborhood). The critical point detection method de-
scribed in [CSM07] uses the direction of vectors around a
voxel cell to be a criterion. Figure 5 demonstrates this idea.
If the voxel cell contains the vectors with all positive and
negative values for every axial vector component (~u ,~v and ~w
), as shown in Figure 5(left), this cell is a candidate to con-
tain the critical point. This method then divides the voxel
cell into 8 subcells, as shown in Figure 5(right), and retests
in the same manner for each subcell. The process ends when
a cell or subcell fails the test (red subcell in Figure 5(right)),
or the subcell is too small, and still a candidate. The center
of a candidate subcell that passes the candidacy test (green
subcell in Figure 5(right)) is taken to be a critical point. The
curve skeleton is then extracted by connecting all detected
critical points. The critical points need to be classified using
the eigenvalues and eigenvectors of the transposed Jacobian
matrix of the vector at that point, as mentioned in section 3.
Because saddle nodes are always located between attracting
and repelling nodes, the curve skeleton can be extracted by
starting at a saddle point, and then moving to the direction

of outward pointing eigenvectors until another critical point
or a previously visited location is met.

6.2. Skeleton-growing method

As mentioned previously, the critical point detection method
is an iterative calculation for each voxel cell. Therefore, de-
tecting a critical point for every voxel is also a timeconsum-
ing task. We propose the skeleton-growing method, which
does not need to detect the critical points for every voxel, as
in the previous method. The skeleton-growing method starts
with a single seed point, and then uses that seed point to
find the other critical points. The seed point must be one
of the critical points that form the curve skeleton, which
must be either a saddle or an attracting node. Therefore, if
we can find one such point, we can use it as a seed point
to search for the other saddle and attracting nodes. This
method uses the divergence calculated by Equation (2) at
each voxel to determine the seed point. Calculating the di-
vergence is not an additional task, because we will use this
value in a later step. A negative divergence characterizes the
rate of the flow converging to that point. Unfortunately, the
maximum negative divergence point may not be an attract-
ing node or saddle node. However, it can guarantee that a
vector moving away from that point will reach the nearest
attracting or saddle node in the vector field. Therefore, we
can find the seed point using this strategy. Then, the curve
skeleton is extracted by using the method described in Algo-
rithm 2. The variable, p, represents a voxel in the 3D object.
In the first iteration, function calculateNextPoint de-
cides the next position using the direction of eigenvec-
tors and their inverse which are calculated by function
calculateEigenVectorsAndInverse. After that,
Algorithm 2 recursively calls itself with the newly de-
termined point. It determines whether that point is criti-
cal or not. We also use the method which described in
[CSM07] to detect a critical point in the vector field. If
it is a critical point, this method stores the skeleton seg-
ment using the function savePath and repeats the pro-
cess to search for other critical points; otherwise, the func-
tion calculateNextPoint uses the direction of the vec-
tor at that point to calculate the next position. For attracting
point, the vectors are moving mainly toward to such point,
so we have to reverse the direction of vector to move further
from that point. Each search path will stop when a boundary
voxel is found, which means that this path is not a skeleton
segment, or previously constructed skeleton is found, which
means that this path is determined as a skeleton segment. If
there is no available search path, this algorithm will termi-
nate. To avoid redundancy in critical point detection, Algo-
rithm 2 marks the voxels that have already been determined
as critical or general by using the function flagVoxel.

Using the skeleton-growing method reduces the number
of critical point detections needed. Although it cannot
guarantee the rate of this reduction because it depends on
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the direction of vectors in the vector field, we can ensure
that, in the worst case, the number of calculations is not
greater than the typical method. The step-size of vector
field tracing process is an important factor. It should be
less than a voxel size to ensure that there is no missing
critical point. Figure 6 shows the resulting curve skeleton
obtained using the skeleton-growing method. The proposed
method delivers a correct curve skeleton which captures all
important parts, although the shape of the curve skeleton
may not be as smooth as the one extracted from a repulsive
force field.

Algorithm 2 : skeletonGrowing(p)

if p is boundary voxel then
stop growing
else if p is skeleton segment then
savePath()
stop growing
else
if p has not been flaged then
detectCriticalPoint()
if p is critical point then
flagVoxel()
savePath()
calculateEigenVectorsAndInverse()
for each eigenvectors and their inverse do

pn = calculateNextPoint()
skeletonGrowing(pn)

end for
else
flagVoxel()
pn = calculateNextPoint()
skeletonGrowing(pn)
end if
end if

7. Additional joints detection

According to Figure 6, the resulting curve skeletons do not
capture all important parts of the dog model. From our ob-
servation, the missing joints are usually located in the high
curvature area. The vectors around the high curvature area
tend to converge in that region and move to the nearest crit-
ical point. We use the negative divergence to determine the
convergence rate. The threshold value, thres, is calculated
by using equation (4). However, it can be controlled by the
percentage value specified by the user:

thres = Divmin +[(Divmax−Divmin)× percentage], (4)

where Divmax and Divmin are maximum and minimum diver-
gences of the vector field, respectively.

All points having a divergence lower than the threshold
will be selected as additional joints. Figure 7 shows the curve
skeletons that include the additional joints found using a
percentage value of 25%.

Figure 6: Curve skeleton extracted using the skeleton-
growing method from a repulsive force field (left) and a
pseudo-normal vector (right).

Figure 7: Curve skeleton extracted using the skeleton-
growing method from a repulsive force field (left) and a
pseudo-normal vector (right). Additional joints are detected
using percentage = 25%.

8. Experimental results

The experiment is set up to measure the accuracy of the
proposed method. We used 30 different 3D models in our
experiment. The curve skeletons were extracted from all of
the voxelized 3D models using the skeleton-growing method
with the vector field created by both a repulsive force and the
pseudo-normal vector. The step-size of vector field tracing
process is 20% of voxel size. Examples of resulting curve
skeletons are shown in Figure 8. Additional joints were de-
tected with a percentage value of 25%. In this experiment,
we found that the percentage value of around 20-25% is
enough to capture all important parts of the original ob-
ject. Although the shapes of the curve skeletons extracted
using our proposed method may not be as smooth as the
one extracted by the repulsive force field, they are located
at the correct position. Therefore, our method is applica-
ble for applications such as animation systems, which do
not need a smooth curve skeleton. Resolution of the vox-
elized 3D model is an important factor affecting the accu-
racy of the extracted skeleton. Cleary that, the higher res-
olution we use, the better accuracy we get. In this exper-
miment, the resolution of each model is around 803 vox-
els. We also measured the computational time for both vec-
tor field calculations and the curve-skeleton extraction pro-
cess by comparing the previous method with our proposed
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Figure 8: Example of curve skeletons extracted using the proposed method from a repulsive force field and the pseudo-normal
vector field. Additional joints are detected using a percentage value of 25%.

Repulsive force(0%) Repulsive force(25%) Pseudo-normal vector(0%) Pseudo-normal vector(25%)

Figure 9: Computational time (in seconds) of the vector
field creation process for the repulsive force field (blue) and
the pseudo-normal vector field (red).

method. The computational time was measured using an In-
tel Core2Duo 2.4 GHz machine with 1 GB of RAM. The
developed software is a single-threaded application so only
one core was used. Figure 9 compares the computational
time of the vector field creation using the repulsive force
field with our proposed method. As the number of voxels
is increased, the computational time of the pseudo-normal

Figure 10: Computational time (in seconds) of the critical
point detection process between a typical approach (blue)
and the skeleton-growing method (red).

vector field increases linearly, while for the repulsive force
field, it increases exponentially. Using our proposed method,
the computational time is significantly reduced. Figure 10
shows the computational time of the critical point detection
process. This experimental result confirms that the skeleton-
growing method can reduce the computation time compared
with the traditional methods.
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9. Conclusion

This paper presents a curve-skeleton extraction from vec-
tor field method. The experimental results demonstrate that
using the proposed pseudo-normal vector field reduces the
computation time of the vector field creation process sig-
nificantly compared with the repulsive force field. Further-
more, the pseudo-normal vector does not need any param-
eters, making this an easier algorithm to use. The skeleton-
growing method can also decrease the computational time,
because it reduces the number of voxels needing to be cal-
culated. Some missing joints can be detected using the di-
vergence of every pixel to determine a convergence area.
Although the proposed method could not produce a smooth
curve skeleton, it is applicable for any applications that re-
quire rapid processing in the skeletonization step. In future
work, we would like to apply our proposed method to the
motion retargeting method to complete an automatic anima-
tion system.
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